Nadia Tahiri
Professeur·e d’université | UdeS - Université de Sherbrooke
2500, boulevard de l'Université CANADA J1K 2R1
1 819 821-8000
| Nadia.Tahiri@USherbrooke.ca
Mes liens avec l'Acfas
ConférencièrePrincipal secteur de recherche ou d'activité
Sciences naturelles, mathématiques et génie
Mes intérêts de recherche
Informatique Biologie et autres sciences connexes Mathématiques fondamentalesMes publications
Articles de revue
- Tahiri, N; Fichet, B; Makarenkov, V. (2022). Building alternative consensus trees and supertrees using k-means and Robinson and Foulds distance. Bioinformatics (Published).
- Tahiri, N; Veriga, A; Koshkarov, A*; Morozov, B. (2022). Invariant transformers of Robinson-Foulds distance matrices for convolutional neural network. Journal of Bioinformatics and Computational Biology (Published).
- Tahiri, N; Koshkarov, A*. (2022). New metrics for classifying phylogenetic trees using k-means and the symmetric difference metric. Classification and Data Science in the Digital Age, Springer Verlag (Accepted).
- Marchitti, SA; Verner, MA; Tahiri, N; Dillingham, C; Chang, D; LaKind, JC; Hines, E; Fenton, S; Kenneke, JF; Goldsmith, MR. (2022). Predicting Breast Milk:Serum Partitioning Using QSAR Models. Chemical Research in Toxicology (Submitted).
- Lévêque, L*; Tahiri, N; Goldsmith, MR; Verner, MA. (2022). Quantitative Structure-Activity Relationship (QSAR) Modeling to Predict the Transfer of Environmental Chemicals across the Placenta. Computational Toxicology (the first two authors are equal contributors and listed in alphabetical order) (Published).
- Chabane, N; Bouaoune, MA; Tighilt, RAS; Boc, A; Lord, E; Tahiri, N; Mazoure, B; Makarenkov, V. (2022). Using Clustering and Machine Learning Algorithms for Intelligent Personalized Shopping Recommendation. IEEE Access (Submitted).
- Chabane, N; Bouaoune, MA; Tighilt, RAS; Mazoure, B; Tahiri, N; Makarenkov, V. (2022). Using clustering and machine learning methods to provide intelligent grocery shopping recommendations. Classification and Data Science in the Digital Age, Springer Verlag (Accepted).
- Kuitche, E; Qi, Y; Tahiri, N; Parmer, J; Ouangraoua, A. (2020). DoubleRecViz: A Web-Based Tool for Visualizing Transcript-Gene-Species reconciliation. Bioinformatics 37 (13), 1920-1922. (Published).
- Tahiri, N; Willems, M; Makarenkov, V. (2018). A new fast method for inferring multiple consensus trees using k-medoids. BMC evolutionary biology 18 (48), 1-12. DOI. (Published).
- Willems, M; Tahiri, N; Makarenkov, V. (2018). Building explicit hybridization networks using the maximum likelihood and Neighbor-Joining approaches. Archives of Data Science, Series A 4 (1), 1-17. DOI. (Published).
- Willems, M; Tahiri, N*; Makarenkov, V. (2015). A new efficient algorithm for inferring explicit hybridization networks following the Neighbor-Joining principle. Journal of Bioinformatics and Computational Biology 12 (5), 1450024. DOI. (Published).
Chapitres de livre
- Makarenkov, V; Barseghyan, GS*; Tahiri, N. (2022). Inferring multiple consensus trees and supertrees using clustering: a review. Data Mining is More Than Comprehensive Analysis (1-33). Springer Nature. (Submitted).
- Cordeiro de Amorim, R; Tahiri, N; Mirkin, B; Makarenkov, V. (2017). A Median-Based Consensus Rule for Distance Exponent Selection in the Framework of Intelligent and Weighted Minkowski Clustering. Data Science (97-110). Springer Verlag. DOI. (Published).
- Badescu, D; Tahiri, N; Makarenkov, V. (2016). A new fast method for detecting and validating horizontal gene transfer events using phylogenetic trees and aggregation functions. Pattern Recognition in Computational Molecular Biology: Techniques and Approaches. (1, 483-504). Wiley. DOI. (Published).
Articles de conférence
- Tahiri, N; Koshkarov, A*. (2022). New metrics for classifying phylogenetic trees using k-means and the symmetric difference metric. International Federation of Classification Societies (IFCS). (Accepted).
- Li, W*; Koshkarov, A*; Luu, ML*; Tahiri, N. (2022). Phylogeography: Analysis of genetic and climatic data of SARS-CoV-2. Scientific Computing with Python (SciPy). (Submitted).
- Koshkarov, A*; Li, W*; Luu, ML*; Tahiri, N. (2022). Phylogeography: Analysis of genetic and climatic data of SARS-CoV-2. Scientific Computing with Python (SciPy). (Accepted).
- Chabane, N; Bouaoune, MA; Tighilt, RAS; Mazoure, B; Tahiri, N; Makarenkov, V. (2022). Using Clustering and Machine Learning Methods to Provide Intelligent Grocery Shopping Recommendations. International Federation of Classification Societies (IFCS). (Accepted).
- Bocéno, A; Bloch, S; Tahiri, N; Verner, MA. (2021). Comparing an Acceptable Exposure Level Based on In Vitro Studies of PFOA Hepatotoxicity to Levels Measured in Epidemiologic Studies. Society of Toxicology (SOT), virtual conference. (Published).
- Tahiri, N. (2021). Invasive insects through phylogeography. 12th Annual symposium of Quebec Centre for biodiversity science (QCBS). (Published).
- Li, W*; Luu, ML*; Tahiri, N. (2021). La phylogéographie : à la recherche de la vérité lorsque tout est en mouvement. Nuit des chercheuses et des chercheurs (Finaliste du concours de vulgarisation scientifique). (Accepted).
- Lévêque, L*; Tahiri, N; Goldsmith, MR; Verner, MA. (2021). Quantitative Structure-Activity Relationship (QSAR) Modeling to Predict the Transfer of Environmental Chemicals Across the Placenta. American Society for Cellular and Computational Toxicology (ASCCT). (Published).
- Aouabed, Z; Abdar, M; Tahiri, N; Champagne Gareau, J; Makarenkov, V. (2020). A Novel Effective Ensemble Model for Early Detection of Coronary Artery Disease. Learning and Analytics in Intelligent Systems (Springer), 480-489. (Published).
- Bocéno, A; Bloch, S; Tahiri, N; Verner, MA. (2020). A case study evaluating the use of in vitro data on perfluorooctanoic acid (PFOA) hepatotoxicity to derive acceptable exposure levels. The Society of Toxicology of Canada (STC), virtual conference. (Published).
- Tahiri, N; Lévêque, L*; Verner, MA. (2020). Predicting the Transfer of Chemicals through Lactation Using Quantitative Structure-Activity Relationship (QSAR) Modeling. Society of Toxicology (SOT). (Published).
- Tahiri, N; Mazoure, B; Makarenkov, V. (2019). An intelligent shopping list based on the application of partitioning and machine learning algorithms. Proceedings of the 18th Python in Science Conference, 85 - 92. (Published).
- Lévêque, L*; Tahiri, N; Verner, MA. (2019). Predicting the placental transfer of chemicals using quantitative structure-activity relationship (QSAR) modeling. Society of Toxicology of Canada (STC). (Published).
- Tahiri, N; Lévêque, L*; Verner, MA. (2019). Quantitative structure-activity relationship (QSAR) modeling as a tool to assess lactational exposure for data-poor chemicals. Society of toxicology of Canada (STC). (Published).
- Tahiri, N. (2018). A new fast method for inferring multiple consensus trees using k-medoids. Canadian Celebration of Women in Computing (CAN-CWiC). (Published).
- Tahiri, N. (2018). An intelligent shopping list based on partitioning and machine learning algorithms. Neural Information Processing Systems (NeurIPS). (Published).
- Tahiri, N. (2017). A new clustering method for building multiple supertrees using k-means. Proceedings of NIPS-2017, (Published).
- Tahiri, N; Willems, M; Makarenkov, V. (2017). A new fast method for building multiple consensus trees using k-medoids. Proceedings of SMC-2017, 31-37. (Published).
- Tahiri, N; Badran, N; Dion-Phénix, H; Meniaï, I; Makarenkov, V. (2017). Avancement des connaissances en bioinformatique en développant un nouvel algorithme pour l’analyse des arbres phylogeographiques. Association Canadienne-Française pour l'Avancement des Sciences (ACFAS). (Published).
- Tahiri, N; Badran, N. (2016). New algorithm to find the relation between genetic and geographic distribution of species. Symposium Sciences biologiques. (Published).
- Tahiri, N*; Willems, M; Makarenkov, V. (2015). Inférence des super-arbres multiples en utilisant l'algorithme des k-moyennes. Proceedings of SFC-2015, 110-114. (Published).
- Cordeiro de Amorim, R; Tahiri, N*; Mirkin, BG; Makarenkov, V. (2015). Minkowski weighted k-means clustering with amedian-based consensus rule. Proceedings of IFCS-2015, 90-110. DOI. (Published).
- Tahiri, N; Willems, M; Makarenkov, V. (2014). Classification d’arbres phylogénétiques basée surl’algorithme des k-moyennes. Proceedings of SFC-2014, 49-54. (Published).
- Tahiri, N*; Boc, A; Willems, M*; Makarenkov, V. (2012). Classification des langues Indo-Européennes basée sur un modèle d’identification de transferts horizontaux de gènes. Proceedings of SFC-2012, (Published).